A ROBUST SPEECH RECOGNITION SYSTEM USING A GENERAL REGRESSION NEURAL NETWORK
نویسندگان
چکیده
منابع مشابه
Efficient System for Speech Recognition using General Regression Neural Network
In this paper we present an efficient system for independent speaker speech recognition based on neural network approach. The proposed architecture comprises two phases: a preprocessing phase which consists in segmental normalization and features extraction and a classification phase which uses neural networks based on nonparametric density estimation namely the general regression neural networ...
متن کاملEMG-based wrist gesture recognition using a convolutional neural network
Background: Deep learning has revolutionized artificial intelligence and has transformed many fields. It allows processing high-dimensional data (such as signals or images) without the need for feature engineering. The aim of this research is to develop a deep learning-based system to decode motor intent from electromyogram (EMG) signals. Methods: A myoelectric system based on convolutional ne...
متن کاملNeural network based regression for robust overlapping speech recognition using microphone arrays
This paper investigates a neural network based acoustic feature mapping to extract robust features for automatic speech recognition (ASR) of overlapping speech. In our preliminary studies, we trained neural networks to learn the mapping from log mel filter bank energies (MFBEs) extracted from the distant microphone recordings, including multiple overlapping speakers, to log MFBEs extracted from...
متن کاملA general regression neural network
A memory-based network that provides estimates of continuous variables and converges to the underlying (linear or nonlinear) regression surface is described. The general regression neural network (GRNN) is a one-pass learning algorithm with a highly parallel structure. It is shown that, even with sparse data in a multidimensional measurement space, the algorithm provides smooth transitions from...
متن کاملSpeech Recognition Using Modified General Fuzzy Min-Max Neural Network
In this paper, we report the results of Marathi (Language spoken in the state of Maharashtra, India) spoken digit recognition using General Fuzzy Min-Max Neural Network (GFMM NN)[1] and Modified General Fuzzy MinMax Neural Network (MGFMM NN), which is obtained by modifying the transfer function of output layer of GFMM NN.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Computing
سال: 2014
ISSN: 2312-5381,1727-6209
DOI: 10.47839/ijc.6.3.445